Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 190: 106614, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492825

RESUMEN

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Asunto(s)
Aeromonas hydrophila , Antioxidantes , Carpas , Eleutherococcus , Fermentación , Enfermedades de los Peces , Lacticaseibacillus rhamnosus , Probióticos , Animales , Lacticaseibacillus rhamnosus/metabolismo , Carpas/microbiología , Probióticos/farmacología , Probióticos/administración & dosificación , Antioxidantes/metabolismo , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/inmunología , Alimentación Animal , Inflamación/prevención & control , Citocinas/metabolismo , Acuicultura
2.
J Fish Dis ; 47(4): e13910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38153008

RESUMEN

Enteric septicemia of catfish (ESC), caused by the gram-negative enteric bacteria Edwardsiella ictaluri, is a significant threat to catfish aquaculture in the southeastern United States. Antibiotic intervention can reduce mortality; however, antibiotic use results in an imbalance, or dysbiosis, of the gut microbiota, which may increase susceptibility of otherwise healthy fish to enteric infections. Herein, recovery of the intestinal microbiota and survivability of channel catfish in response to ESC challenge was evaluated following a 10-day course of florfenicol and subsequent probiotic or prebiotic supplementation. Following completion of florfenicol therapy, fish were transitioned to a basal diet or diets supplemented with a probiotic or prebiotic for the remainder of the study. Digesta was collected on Days 0, 4, 8 and 12, beginning on the first day after cessation of antibiotic treatment, and gut microbiota was characterized by Illumina sequencing of the 16S rRNA gene (V4 region). Remaining fish were challenged with E. ictaluri and monitored for 32 days post-challenge. Florfenicol administration resulted in dysbiosis characterized by inflated microbial diversity, which began to recover in terms of diversity and composition 4 days after cessation of florfenicol administration. Fish fed the probiotic diet had higher survival in response to ESC challenge than the prebiotic (p = .019) and negative control (p = .029) groups.


Asunto(s)
Bagres , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Microbioma Gastrointestinal , Ictaluridae , Probióticos , Tianfenicol/análogos & derivados , Animales , Edwardsiella ictaluri/fisiología , Prebióticos , Disbiosis , ARN Ribosómico 16S , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Antibacterianos/farmacología , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria
3.
Fish Physiol Biochem ; 49(5): 925-937, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37594621

RESUMEN

Piperine, the main bioactive component of black pepper (Piper nigrum) or long pepper (Piper longum), has anti-inflammatory, antifungal, and antibacterial properties. This study was carried out to evaluate the supplemental effects of piperine in olive flounder (Paralichthys olivaceus) diets. Six isonitrogenous and isolipidic diets were formulated to contain different levels of piperine at 0.00, 0.25, 0.50, 0.75, 1.00, and 2.00 g/kg (Con, P25, P50, P75, P100, and P200, respectively). Diets were randomly allocated to triplicate groups of fish (initial weight 27.6 ± 0.4 g, 30 fish/tank) and fed three times daily for 8 weeks. Results showed that dietary piperine significantly improved fish growth and feed utilization efficiency. The highest growth, including the highest Igf-1 mRNA expression, was observed in the P50 group, while P50 and P75 groups showed the highest protein efficiency ratio. Compared to the Con group piperine supplemented groups had significantly higher lysozyme activity, immunoglobulin level, and phagocytosis activities. Plasma cholesterol was significantly lower in fish fed P200 diet. Dry matter and protein digestibility were higher in P25, P50, and P75 groups than in Con group. Dietary piperine increased the intestinal villi length and goblet cell counts. In the challenge test against Edwardsiella tarda, all the groups supplemented with piperine showed higher cumulative survival compared to Con group. Therefore, these findings indicate that dietary piperine supplementation can improve growth performance, innate immunity, disease resistance, diet digestibility, and intestinal morphology of olive flounder. The optimum dietary piperine level seems to be approximately 0.5 g/kg for the fish.


Asunto(s)
Enfermedades de los Peces , Lenguado , Animales , Inmunidad Innata , Suplementos Dietéticos , Resistencia a la Enfermedad , Dieta/veterinaria , Alimentación Animal/análisis , Enfermedades de los Peces/microbiología
4.
Sci Rep ; 13(1): 11345, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443328

RESUMEN

Species diversification from major to minor carps for their sturdiness and initial higher growth, and also a quest for antibiotic-free aqua farming in the subcontinent, mandates search for and evaluation of alternatives. An experiment was performed to investigate the potential of fructooligosaccharide (FOS) and Bacillus subtilis (BS) (alone or as synbiotics) in promoting growth and immunity against infections in Labeo fimbriatus fingerlings. Six iso-nitrogenous and iso-lipidic diets containing combinations of two levels of FOS (0% and 0.5%) and three levels of BS (0, 104, 106 CFU/g feed) were fed to fish for 60 days. At the end of the feeding trial, twenty-four fish from each group were injected intra-peritoneally with pathogenic strain of Aeromonas hydrophila O:18 to test the immunoprotective efficacy of the supplements against bacterial infection. BS, but not FOS, significantly improved (P < 0.05) growth and feed utilisation attributes like percentage weight gain (PWG), specific growth rate (SGR) and feed conversion ratio (FCR). There were interactive effects of FOS and BS on PWG, SGR and FCR; however, the effects were not additive in nature. These beneficial effects of BS, alone or in combination with FOS, were corroborated by increased protease activity, microvilli density and diameter and number of goblet cells. Overall beneficial effects of FOS and BS included improved erythrocyte (RBC), hemoglobin (Hb), total protein and globulin levels. Total leucocyte (WBC) count and immunological parameters like respiratory burst activity of leucocytes (NBT reduction), lysozyme activity, albumin: globulin ratio and post-challenge survival were significantly improved by both FOS and BS, and their dietary combination yielded the highest improvement in these parameters. Synergistic effects of FOS and BS as dietary supplements indicate that a combination of 106 CFU/g BS and 0.5% FOS is optimal to improve growth, feed utilisation, immune functions, and disease resistance in L. fimbriatus fingerlings.


Asunto(s)
Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Simbióticos , Animales , Aeromonas hydrophila , Alimentación Animal/análisis , Bacillus subtilis , Dieta , Suplementos Dietéticos , Resistencia a la Enfermedad , Enfermedades de los Peces/microbiología
5.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1502-1516, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431590

RESUMEN

A feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato-biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH-included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho-metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration-dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%-8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano-macrophage centres. The mortality rate among S. agalactiae-infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.


Asunto(s)
Azadirachta , Cíclidos , Enfermedades de los Peces , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Cíclidos/fisiología , Hidrolisados de Proteína , Streptococcus agalactiae/metabolismo , Azadirachta/metabolismo , Proteínas de Plantas , Desarrollo Económico , Resistencia a la Enfermedad , Dieta/veterinaria , Peso Corporal , Alimentación Animal/análisis , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología
6.
J Fish Dis ; 46(9): 1001-1012, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37309564

RESUMEN

Iron uptake during infection is an essential pathogenicity factor of several bacteria, including Tenacibaculum dicentrarchi, an emerging pathogen for salmonid and red conger eel (Genypterus chilensis) farms in Chile. Iron-related protein families were recently found in eight T. dicentrarchi genomes, but biological studies have not yet confirmed functions. The investigation reported herein clearly demonstrated for the first time that T. dicentrarchi possesses different systems for iron acquisition-one involving the synthesis of siderophores and another allowing for the utilization of heme groups. Using 38 isolates of T. dicentrarchi and the type strain CECT 7612T , all strains grew in the presence of the chelating agent 2.2'-dipyridyl (from 50 to 150 µM) and produced siderophores on chrome azurol S plates. Furthermore, 37 of the 38 T. dicentrarchi isolates used at least four of the five iron sources (i.e. ammonium iron citrate, ferrous sulfate, iron chloride hexahydrate, haemoglobin and/or hemin) when added to iron-deficient media, although the cell yield was less when using hemin. Twelve isolates grew in the presence of hemin, and 10 of them used only 100 µM. Under iron-supplemented or iron-restricted conditions, whole cells of three isolates and the type strain showed at least one membrane protein induced in iron-limiting conditions (c.a. 37.9 kDa), regardless of the isolation host. All phenotypic results were confirmed by in-silico genomic T. dicentrarchi analysis. Future studies will aim to establish a relationship between iron uptake ability and virulence in T. dicentrarchi through in vivo assays.


Asunto(s)
Enfermedades de los Peces , Tenacibaculum , Animales , Hierro/metabolismo , Sideróforos , Hemina/metabolismo , Enfermedades de los Peces/microbiología , Tenacibaculum/genética , Peces
7.
J Fish Dis ; 46(9): 977-986, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37294673

RESUMEN

Streptococcosis disease caused by Streptococcus agalactiae (Group B Streptococcus, GBS) results in a huge economic loss of tilapia culture. It is urgent to find new antimicrobial agents against streptococcosis. In this study, 20 medicinal plants were evaluated in vitro and in vivo to obtain medicinal plants and potential bioactive compounds against GBS infection. The results showed that the ethanol extracts of 20 medicinal plants had low or no antibacterial properties in vitro, with a minimal inhibitory concentration ≥256 mg/L. Interestingly, in vivo tests showed that 7 medicinal plants could significantly inhibit GBS infection in tilapia, and Sophora flavescens (SF) had the strongest anti-GBS activity in tilapia, reaching 92.68%. SF could significantly reduce the bacterial loads of GBS in different tissues (liver, spleen and brain) of tilapia after treated with different tested concentrations (12.5, 25.0, 50.0 and 100.0 mg/kg) for 24 h. Moreover, 50 mg/kg SF could significantly improve the survival rate of GBS-infected tilapia by inhibiting GBS replication. Furthermore, the expression of antioxidant gene cat, immune-related gene c-type lysozyme and anti-inflammatory cytokine il-10 in liver tissue of GBS-infected tilapia significantly increased after treated with SF for 24 h. Meanwhile, SF significantly reduced the expression of immune-related gene myd88 and pro-inflammatory cytokines il-8 and il-1ß in liver tissue of GBS-infected tilapia. The negative and positive models of UPLC-QE-MS, respectively, identified 27 and 57 components of SF. The major components of SF extract in the negative model were α, α-trehalose, DL-malic acid, D- (-)-fructose and xanthohumol, while in the positive model were oxymatrine, formononetin, (-)-maackiain and xanthohumol. Interestingly, oxymatrine and xanthohumol could significantly inhibit GBS infection in tilapia. Taken together, these results suggest that SF can inhibit GBS infection in tilapia, and it has potential for the development of anti-GBS agents.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Plantas Medicinales , Infecciones Estreptocócicas , Tilapia , Animales , Sophora flavescens , Streptococcus agalactiae/genética , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tilapia/microbiología , Citocinas , Cíclidos/microbiología
8.
Res Vet Sci ; 159: 214-224, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37167686

RESUMEN

Organic acids (OAs) are a class of feed additives that have prophylactic and inhibitory properties against pathogenic bacteria. In this study, we investigated growth performance, innate immune response, gut microbiota, and disease resistance against Francisella orientalis F1 in Nile tilapia (Oreochromis niloticus) fed different doses of Bacti-nil®Aqua, a blend of short- and medium-chain OAs. For 21 days, 680 juvenile tilapias were fed a control diet or diets supplemented with a 0.3% (D3) or 0.5% (D5) OA blend. The feed conversion rate of fish fed the 0.5% enriched diet was considerably lower (p < 0.05) than that of the fish fed the basal diet. Lysozyme and serum bactericidal activities were significantly elevated following OA administration. After infection, no differences in the diversity and composition of gut microbiota were observed between the groups. After the bacterial challenge, the mortality was significantly lower in group D5 (p < 0.01). The diet supplemented with Bacti-nil®Aqua (Adisseo) improved the immune response and resistance of tilapia juveniles against F. orientalis infection. Thus, this OA blend could serve as a feed additive with good activity against F. orientalis.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Microbioma Gastrointestinal , Infecciones Estreptocócicas , Animales , Alimentación Animal/análisis , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/veterinaria , Suplementos Dietéticos/análisis , Inmunidad Innata , Dieta/veterinaria , Resistencia a la Enfermedad
9.
Fish Physiol Biochem ; 49(1): 75-95, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36502487

RESUMEN

In this study, we evaluated to reveal the effects of aqueous methanolic extract of celery (Apium graveolens) on the growth performance, immune responses, and resistance against Vibrio anguillarum in European seabass (Dicentrarchus labrax). For this purpose, twenty fish (initial mean weight of 4.80 ± 0.06 g) were placed into twelve tanks (400 L) in triplicate and fish were fed with control (C) and three different levels (0.01, 0.05, and 0.1 g/kg) of A. graveolens (AG) extract-containing diets (AG0.01, AG0.05, and AG0.1) for 30 days. Blood and tissue (kidney, spleen, and intestine) samples were taken from the fish every 10 days during the study to determine the immune responses of the fish. Respiratory burst activity (RBA) was significantly decreased in the AG0.1 group compared to all other groups on the 10th day of the study (P < 0.05). Significance was noticed in the RBA of fish in all AG groups compared to the C group (P < 0.05) on the 30th day of the experiment Lysozyme activity (LYS) was raised on the 10th day of the study in all celery groups compared to the C group (P < 0.05). No differences in the myeloperoxidase activity (MPO) were observed among the experimental groups (P > 0.05). The final mean weight (FMW) was not affected in any experimental groups (P > 0.05). However, in the AG0.05 group, the specific growth rate (SGR) increased, and the feed conversion ratio (FCR) decreased compared to other groups (P < 0.05). IL-1ß in the kidney was highly elevated in the AG0.01 group on the 20th day of the study (P < 0.05). Similar results were observed on IL-6, IL-8, and TNF-α expression in the kidney (P < 0.05). Anti-inflammatory responses (IL-10 and TGF-ß) also increased in all experimental groups and tissues compared to the C group (P < 0.05). COX-2 was upregulated on the 20th day of the study in all tissues (P < 0.05). At the end of the feeding trial, the survival rate of the AG0.1 group in fish infected with Vibrio anguillarum infection was higher than the C group. Dietary celery extract did not affect growth performance directly but increased innate immune responses and a high survival rate. Overall, compared to the control group, the growth, immunity, and resistance of European seabass fed with a diet containing 0.05 g/kg celery aqueous methanolic extract has been improved, and this could be used as an immunostimulant feed additive.


Asunto(s)
Apium , Lubina , Enfermedades de los Peces , Vibriosis , Animales , Lubina/fisiología , Dieta/veterinaria , Inmunidad Innata , Vibriosis/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Enfermedades de los Peces/microbiología , Resistencia a la Enfermedad
10.
J Aquat Anim Health ; 34(3): 140-148, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36165569

RESUMEN

Production of Nile Tilapia Oreochromis niloticus contributes to economic growth in many countries. However, there has been a decline in its production over the years due to the influx of bacterial infections, with Aeromonas jandaei as an emerging threat. In this study, we identified and characterized A. jandaei from cage-cultured Nile Tilapia in Akosombo Stratum II of Lake Volta in Ghana and evaluated its response to commonly used antibiotics using the disc diffusion and agar well diffusion methods for herbal extracts at various concentrations (10, 30, 50, 70, and 100 mg/mL). The herbs considered included guava Psidium guajava leaf, bitter leaf Vernonia amygdalina, neem Azadirachta indica leaf, and their cocktail (GBNL in the ratio of 1:1:1). The bacterium was isolated from swab samples from the head kidneys of 27 moribund Nile Tilapia collected from nine fish farms. Samples were screened for A. jandaei by culturing and identification using morphological and molecular techniques. The bacterium isolate from fish in the study, identified as A. jandaei GH-AS II, had 92-93% identity to A. jandaei reference strains. Infection of healthy Nile Tilapia (n = 210) with the bacterium isolate showed that 1.0 × 105 CFU/mL was the lethal dose causing 50% mortality. Antibiotic susceptibility testing showed that A. jandaei GH-AS II was resistant to tetracycline and ampicillin. Herbal extracts at the various concentrations inhibited the growth of the bacterium isolate, with a significant increment in the zones of inhibition with increasing concentrations of leaf extracts. However, GBNL showed prominence compared to the other extracts only at 100 mg/mL. Management of A. jandaei GH-AS II by using herbal extracts at Nile Tilapia farms in Lake Volta may be recommended since the use of antibiotics, such as tetracycline and ampicillin, may not yield the needed result.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Aeromonas , Agar , Ampicilina , Animales , Antibacterianos/farmacología , Cíclidos/microbiología , Enfermedades de los Peces/microbiología , Ghana , Lagos , Tetraciclinas
11.
Fish Shellfish Immunol ; 127: 836-842, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35843526

RESUMEN

Carbohydrates are widely distributed in nature as an important nutritional substance and energy source. However, the utilization efficiency of carbohydrates is very poor in fish. Over consumption of carbohydrates will cause excessive inflammatory response and result in lower pathogen resistance in fish. Probiotics have been widely used to prevent inflammation, but the underlying mechanism still needs more exploration. In this study, three diets, including a control diet (CD), a high-carbohydrate diet (HD) and the HD supplemented with Bacillus amyloliquefaciens SS1 (HDB) were used to feed Nile tilapia for 10 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila (A. hydrophila) for 7 days. The data showed that the addition of Bacillus amyloliquefaciens SS1 (B. amyloliquefaciens SS1) significantly increased the survival rate and enhanced the respiratory burst activity of head kidney leukocytes in Nile tilapia. B. amyloliquefaciens SS1 treatment significantly elevated the anti-oxidative capability, which was evidenced by higher activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), and higher content of reduced glutathione (GSH) in the serum. Administration with B. amyloliquefaciens SS1 effectively suppressed inflammatory response in the liver by inhibiting nuclear factor kappa-B (NF-κB)/interleukin-1 beta (IL-1ß) inflammatory signaling pathway. In vitro analysis suggested that intestinal bacteria derived-acetate has the antioxidant capability, which may account for the alleviation of inflammation. Overall, this study demonstrated that dietary supplementation with B. amyloliquefaciens SS1 protected Nile Tilapia against A. hydrophila infection and suppressed liver inflammation by enhancing antioxidant capability.


Asunto(s)
Bacillus amyloliquefaciens , Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Carbohidratos , Cíclidos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Inflamación/prevención & control , Inflamación/veterinaria , Hígado/metabolismo
12.
Sci Rep ; 12(1): 9992, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705587

RESUMEN

A field survey was conducted on five fish farms to trace glyphosate and malathion pollution with some physicochemical parameters. A precise half-life time, LC50-96h, of these agrochemicals on Oreochromis niloticus, as well as chronic exposure with organic selenium (OS) supplementation, were experimentally investigated. Oreochromis niloticus was subjected to the following: (negative control); (2 mg L-1 glyphosate); (0.5 mg L-1 malathion); (glyphosate 1.6 mg L-1 and 0.3 mg L-1 malathion); (glyphosate 2 mg L-1 and OS 0.8 g kg-1 diet); (malathion 0.5 mg L-1 and OS 0.8 g kg-1 diet) and (glyphosate 1.6 mg L-1; malathion 0.3 mg L-1 and OS 0.8 g kg-1 diet). Furthermore, data from the analyzed pond revealed a medium risk quotient (RQ) for both agrochemicals. The detected agrochemicals were related to their application, and vegetation type surrounding the farms, also their biodegradation was correlated to water pH, temperature, and salinity. Glyphosate and malathion had half-lives of 2.8 and 2.3 days and LC50-96h of 2.331 and 0.738 mg L-1, respectively. The severest nervous symptoms; increased oxidative stress markers, as well as high bacterial count in the livers and kidneys of fish challenged with Aeromonas hydrophila, were observed in the combined exposure, followed by a single exposure to malathion and then glyphosate. Organic selenium mitigated these impacts.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Selenio , Agroquímicos/metabolismo , Alimentación Animal/análisis , Animales , Cíclidos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Enfermedades de los Peces/microbiología , Glicina/análogos & derivados , Malatión/toxicidad , Medición de Riesgo , Selenio/metabolismo
13.
Dis Aquat Organ ; 149: 33-45, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510819

RESUMEN

The largemouth bass Micropterus salmoides is an important freshwater aquaculture fish in China. Recently, largemouth bass at a fish farm in Guangdong province experienced an outbreak of a serious ulcer disease. As part of the investigations conducted to identify the aetiology and identify potentially effective control measures, we isolated a pathogenic bacterium (NK-1 strain) from the diseased fish. It was identified as Nocardia seriolae through morphological observation, physiological and biochemical analysis, and molecular identification, and its pathogenicity was verified by experimental infection. Pathological changes in the diseased fish included granulomatous lesions in the liver and spleen, destruction of renal tubules, necrosis of intestinal epithelial cells, infiltration of inflammatory cells in the brain, vacuolation of cells, and swelling and cracking of the mitochondria and endoplasmic reticulum. Bacterial detection using qPCR showed that the spleen and intestine were the main organs targeted by N. seriolae. The mortality of largemouth bass experimentally infected with N. seriolae at 21°C was significantly lower than that in fish infected at higher temperatures between 24 and 33°C; there were no significant differences in the levels of mortality at these higher temperatures. The level of mortality of largemouth bass infected with N. seriolae was lowest at a neutral water pH of 7 but increased significantly at higher and lower pH. Of the tested Chinese herbal medicines, Chinese sumac Galla chinensis and Chinese skullcap Scutellaria baicalensis exhibited the best antibacterial effects. This study lays a foundation for the clinical diagnosis and scientific control of ulcer disease in largemouth bass.


Asunto(s)
Lubina , Enfermedades de los Peces , Nocardia , Animales , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Úlcera/veterinaria
14.
Microb Pathog ; 167: 105559, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35568093

RESUMEN

With the aim to discover novel lactic acid bacteria and Bacillus strains from fish as potential probiotics to replace antibiotics in aquaculture, the present study was conducted to isolate lactic acid bacteria and Bacillus from intestinal tract of healthy crucian carp (Carassiu auratus) and largemouth bass (Micropterus salmoides) and evaluate their resistance against Aeromonas veronii. Based on the evaluation of antibacterial activity and tolerance test, one strain of lactic acid bacteria (Weissella cibaria C-10) and one strain of Bacillus (Bacillus amyloliquefaciens T-5) with strong environmental stability were screened out. The safety evaluation showed that these two strains were non-toxic to crucian carp and were sensitive to most antibiotics. In vivo study, the crucian carps were fed a basal diet supplemented with W. cibaria C-10 (C-10), B. amyloliquefaciens T-5 (T-5) and W. cibaria C-10 + B. amyloliquefaciens T-5 (C-10+T-5), respectively, for 5 weeks. Then, various immune parameters were measured at 35 days of post-feeding. Results showed both probiotics could improve the activities of related immune enzymes, immune factors and non-specific immune antibodies in blood and organs (gill, gut, kidney, liver, and spleen) of crucian carp in varying degrees. Moreover, after 7 days of challenge experiment, the survival rates after challenged with A. veronii of W. cibaria C-10 (C-10), B. amyloliquefaciens T-5 (T-5) and W. cibaria C-10 + B. amyloliquefaciens T-5 (C-10+T-5) supplemented groups to the crucian carps were 20%, 33% and 22%, respectively. Overall, W. cibaria C-10 and B. amyloliquefaciens T-5 could be considered to be developed into microecological preparations for the alternatives of antibiotics in aquaculture.


Asunto(s)
Bacillus amyloliquefaciens , Bacillus , Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Probióticos , Aeromonas veronii , Animales , Antibacterianos/farmacología , Suplementos Dietéticos , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Weissella
15.
J Fish Dis ; 45(6): 815-823, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35315084

RESUMEN

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), can infect humans, terrestrial animals and fish. The emergence of bacterial resistance of S. agalactiae to antibiotics leads to an urgent need of exploration of new antimicrobial agents. In the study, the antibacterial activity of natural component plumbagin (PLB) against S. agalactiae was investigated in vitro and in vivo. The results showed that the minimal inhibitory concentration (MIC) of PLB against S. agalactiae was 8 mg/L. The growth curve assay revealed that PLB could inhibit the growth of S. agalactiae. In addition, the time-killing curve showed that S. agalactiae was killed almost completely by 2-fold MIC of PLB within 12 h. Transmission electron microscopy results showed obvious severe morphological destruction and abnormal cells of S. agalactiae after treated with PLB. The pathogenicity of S. agalactiae to zebrafish was significantly decreased after preincubation with PLB for 2 h in vitro, further indicating the bactericidal activity of PLB. Interestingly, PLB could kill S. agalactiae without inducing resistance development. Furthermore, pretreatment and post-treatment assays suggested that PLB also exhibited the antibacterial activity against S. agalactiae infection in vivo by effectively reducing the bacterial load and improving the survival rate of S. agalactiae-infected zebrafish. In summary, PLB had potent antibacterial activity against S. agalactiae in vitro and in vivo, and it could be an excellent antimicrobial candidate to prevent and control S. agalactiae infection.


Asunto(s)
Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Antibacterianos/farmacología , Enfermedades de los Peces/microbiología , Naftoquinonas , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae , Pez Cebra
16.
Pak J Pharm Sci ; 35(1(Supplementary)): 323-333, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35228194

RESUMEN

Present study investigate the in-vitro antibacterial and antifungal potential of Typha elephantina leaves aqueous extract (T. Eaq), ethanolic extract (T. Eeth) and methanolic extract (T. Emth) at different dosages against selected bacteria and fungi using dis diffusion method and Potato Dextrose Agar method. The study was also proceeded in- vivo against one strain of fungi (Aspergillus niger) using aqueous (T. Eaq) extract only. In-vitro study showed that Citrobacter freundii was highly sensitive while Salmonella typhimurium was the least among all. The antifungal activity was dose dependent and differs according to the fungal strain. Aspergillus niger was highly sensitive in order of aqueous extract (T. Eaq), ethanolic extract (T. Eeth) and methanolic extract (T.Emth), followed by Alterneria solani, Candida albicans and Aspergillus ustus. The in-vivo antifungal study was carried using Cyprinus carpio which were first infected with Aspergillus niger and then treated with (T. Eaq) at different doses. During in-vivo study various hematobiochemicl parameters and bio-accumulative stress of some heavy metals were assessed. Highly significant (P<0.05) remedial effects were observed at day 21st of treatment with extract at 100mg/ kg body weight. Differential accumulation was found i.e in skin the accumulation was highest followed by intestine gills and muscles tissues. Liver showed least accumulation.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Aspergilosis/veterinaria , Extractos Vegetales/farmacología , Hojas de la Planta/química , Typhaceae/química , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Antifúngicos/química , Aspergilosis/tratamiento farmacológico , Bacterias/efectos de los fármacos , Carpas , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Hongos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico
17.
Fish Physiol Biochem ; 48(1): 67-83, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34973140

RESUMEN

This study investigated the effects of dietary Flos populi extract (FPE) on the growth, antioxidation capability, innate immune response, and disease resistance in gibel carp. A total of 480 fish were fed with five different diets containing 0, 0.5, 1.0, 1.5, or 2.0 g kg-1 FPE (designated as control, D0.5, D1.0, D1.5, or D2.0 groups) for 45 days. The fish were challenged with A. hydrophila after the feeding trial. Compared with the control, the feed efficiency (FE), weight gain (WG), final body weight (FBW), and specific growth rate (SGR) were significantly improved in groups D1.0 and D1.5. Dietary FPE significantly increased serum superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, as well as glutathione (GSH) content. The contents of protein carbonyl (PCC) and malondialdehyde (MDA) in serum decreased significantly. Additionally, FPE supplementation in diets resulted in significant improvement in serum lysozyme (LZM) and myeloperoxidase (MPO) activities, as well as immunoglobulin M (IgM) and complement 3 (C3) concentrations. The hepatic antioxidant enzymes (CAT and SOD) activities increased, whereas content of MDA decreased in fish treated with dietary FPE than those of control both pre- and post-challenged. After 12 h-challenge, an obvious downregulation of hepatic Kelch-like-ECH-associated protein 1 (Keap1), splenic tumor necrosis factor-α (TNF-α), interleukin (IL)-8, IL-1ß, and toll-like receptor 2 (TLR2) mRNA levels was observed in fish treated with dietary FPE, whereas hepatic Nrf2 transcription level was upregulated compared to the control. Furthermore, compared to group D0.5, higher relative percent survival (RPS) was observed in gibel carp fed dietary 1.0-2.0 g/kg FPE. Our results reveal that FPE supplemented diet has a stimulatory effect on antioxidant capacity and nonspecific immune response, along with improved growth performance and enhanced resistance against A. hydrophila infection in juvenile gibel carp.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de los Peces , Carpa Dorada , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Extractos Vegetales , Populus/química , Aeromonas hydrophila , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Catalasa , Dieta/veterinaria , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Glutatión Peroxidasa , Carpa Dorada/crecimiento & desarrollo , Carpa Dorada/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Superóxido Dismutasa
18.
Fish Shellfish Immunol ; 120: 560-568, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34958920

RESUMEN

To evaluate the effects of dietary short chain fatty acids (SCFAs) on the intestinal health and innate immunity in crucian carp, a six-week feeding trial was carried out with following treatments: basal diet (BD), basal diet supplementation with 1% sodium acetate (BDSA), basal diet supplementation with 1% sodium propionate (BDSP) and basal diet supplementation with 1% sodium butyrate (BDSB). The results showed dietary BDSA, BDSP and BDSB could protect the host against oxidative stress by improving the activity of certain antioxidative enzymes (T-SOD, GSH-Px and CAT). Additionally, dietary SCFAs could enhance mucosal and humoral immune responses by improving certain innate immune parameters in serum and skin mucus productions (IgM, ACH50 and T-SOD). Furthermore, dietary BDSA and BDSP could up-regulate the expression of immune related genes (TNF-α, TGF-ß and IL-8) and tight junction protein genes (occludin and ZO-1). Dietary BDSB could also elevate the expression of IL-8, TGF-ß, ZO-1 and Occludin in the midgut. Although dietary differences of SCFAs didn't alter the α-diversity of the intestinal flora, they altered the core microbiota. Finally, the challenge trial showed that dietary basal diet supplementation with SCFAs could protect zebrafish against Aeromonas hydrophila. These results suggest that dietary SCFAs could improve innate immunity, modulate gut microbiota and increase disease resistance in the host, which indicated the potential of SCFAs as immunostimulants in aquaculture.


Asunto(s)
Dieta , Resistencia a la Enfermedad , Ácidos Grasos Volátiles , Enfermedades de los Peces , Microbioma Gastrointestinal , Pez Cebra , Aeromonas hydrophila , Alimentación Animal/análisis , Animales , Antioxidantes , Dieta/veterinaria , Suplementos Dietéticos/análisis , Ácidos Grasos Volátiles/administración & dosificación , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Interleucina-8 , Ocludina , Superóxido Dismutasa , Factor de Crecimiento Transformador beta , Pez Cebra/inmunología , Pez Cebra/microbiología
19.
Fish Shellfish Immunol ; 120: 716-736, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34968713

RESUMEN

The current study addressed to investigate the effect of lycopene (LYC) on blood physiology, digestive-antioxidant enzyme activity, specific-nonspecific immune response, and inflammatory gene transcriptional regulation (cytokines, heat shock proteins, vitellogenins) in spotted snakehead (Channa punctata) against Pseudomonas aeruginosa. In unchallenged and challenged fish treated with 200 mg LYC enriched diet the growth performance and digestive-antioxidant enzymes increased after 30 days, whereas with inclusion of 100 or 400 mg LYC in the diets, the increase manifested on or after 45 days. No mortality in fish treated with any LYC diet against P. aeruginosa was revealed. In the unchallenged and challenged fish the phagocytic (PC) activity in head kidney (HK) and spleen were significantly enhanced when fed the control diet or other LYC diets, whereas the respiratory burst (RB) activity and nitric oxide (NO) production significantly increased when fed the 200 mg diet for 45 and 60 days. Similarly, the lysozyme (Lyz) activity in the HK and spleen, and total Ig content in serum were significantly higher in both groups fed the 200 mg LYC diet for 15, 45, and 60 days. Heat shock protein (Hsp 70) was significantly improved in the uninfected group fed the 200 mg LYC diet for 45 and 60 days, but Hsp27 did not significantly change among the experimental groups at any time points. TNF-α and IL-6 mRNA pro-inflammatory cytokine expression significantly increased in both groups fed the 200 mg LYC diet after 45 and 60 days, while the IL-12 mRNA expression was moderate in both groups fed the same diet for 60 days. The IL-10 did not significant mRNA expression between groups at any sampling. The iNOS and NF-κB mRNA expression was pointedly high in both groups fed the 200 mg LYC diet on day 45 and 60. Vitellogenin A (VgA) mRNA was significantly higher in the uninfected fish fed the 100 and 200 mg LYC diets for 45 and 60 days, but VgB did not reveal significant difference between the treatment groups at any time points. The present results suggest that supplementation of LYC at 200 mg significantly modulate the blood physiology, digestive-antioxidant enzymes, specific-nonspecific immune parameters, and cytokines, Hsp, and vitellogenins in spotted snakehead against P. aeruginosa.


Asunto(s)
Antioxidantes , Enfermedades de los Peces , Peces/inmunología , Licopeno/administración & dosificación , Pigmentos Biológicos/administración & dosificación , Infecciones por Pseudomonas/veterinaria , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Citocinas/genética , Dieta/veterinaria , Suplementos Dietéticos , Fenómenos Fisiológicos del Sistema Digestivo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Inmunidad Innata/genética , Pseudomonas aeruginosa , ARN Mensajero , Vitelogeninas
20.
Fish Shellfish Immunol ; 120: 360-368, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34910977

RESUMEN

In large-scale aquaculture, the fast growth rate of fish is positively influenced by feed additives such as medicinal plants. This is however; infectious disease may reduce fish growth and cause devastating economic loss. The present study investigated in vitro antibacterial efficacy of Mooseer (Allium hirtifolium) extract against Streptococcus iniae and its in vivo effects on growth, biochemical parameters, innate immunity of rainbow trout (Oncorhynchus mykiss). Therefore, six experimental diets were designed to include different levels of Mooseer from zero (as control), 5, 10, 15, 20, and 25 g per kg diet respectively referred to as M1 to M5. Results from the antibacterial evaluation showed that Mooseer extract inhibits S. iniae growth with MIC and MBC values of 128 and 256 µg ml-1. Appreciable results were obtained in the groups supplemented with Mooseer. Mooseer enhanced growth performance, and modulated serum biochemical and immunological parameters (total protein, albumin, triglyceride, glucose, cortisol, cholesterol, lysozyme, Ig, ACH50, ALP, and protease activity), and liver enzymes (ALT, AST and ALP). The greatest effects were found for higher doses of Mooseer supplementation (M4 and M5). Meanwhile, results from the survival rate of fish challenged with S. iniae showed higher survival in M2 and M4 treatments. The present findings suggest the beneficial use of Mooseer in rainbow trout diet, with 20 g kg-1 inclusion as the recommended dose.


Asunto(s)
Allium , Enfermedades de los Peces , Oncorhynchus mykiss , Extractos Vegetales , Infecciones Estreptocócicas , Allium/química , Alimentación Animal/análisis , Animales , Antibacterianos/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Enfermedades de los Peces/microbiología , Inmunidad Innata , Oncorhynchus mykiss/inmunología , Extractos Vegetales/farmacología , Infecciones Estreptocócicas/veterinaria , Streptococcus iniae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA